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ABSTRACT 
 

In this paper we study the formulation of the constitutive relation of non-Newtonian visco-elastic 

fluid flow obeying an Oldroyd-B differential model and decoupling it into two auxiliary problems 

namely Navier-stokes and transport problem, we write the program in FreeFem++ to solve this 

model using the finite element method(FEM). We first give the general form of constitutive 

equations for visco-elastic Oldroyd-B fluid. The unknowns of these equations are σ  the visco-

elastic part of the extra stress tensor, u the velocity and p  the pressure. We solve alternatively a 

transport equation for the stress and a Navier-Stokes like problem for velocity and pressure. We 

find the variational formulation of the two auxiliary problems and then we present the programs in 
FreeFem++ based on finite element method to solve them. We approximate the extra stress, 

velocity and pressure via P1 continuous, P2 continuous and P1 continuous finite element 

respectively. 

 

Keywords: Oldroyd-B model, Navier-Stokes equations, transport equation, finite element method, 

FreeFem++. 
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INTRODUCTION: 

In this paper we present the formulation of Oldroyd-B constitutive equations and decoupling it into two auxiliary 

problems we develop the program in FreeFem++ to solve them based on finite element method (FEM). The 

constitutive equations consist of highly non-linear system of partial differential equations of mixed elliptic-

hyperbolic form that can be decoupled into a Navier -Stokes system and a tensorial transport equation. The visco-

elastic part of extra stress tensorσ , the velocity u  and the pressure p  are the unknowns. We assume that the 

solution ),,( puσ  is sufficiently smooth. We find ),( pu by solving the Navier-Stokes equations and the tensor 

σ by solving the tensorial transport equation. The approximation of extra stress tensor, velocity and pressure are 

respectively P1 continuous, P2 continuous and P1 continuous finite element. We begin by describing conservation 

of laws [6], [14].Then we formulate the constitutive model of Oldroyd-B for incompressible visco-elastic flow. 

We decouple this constitutive equation into two auxiliary equations namely Navier-stokes equations and tensorial 

transport equation. We derive the variational formulation of these two auxiliary problems and we introduce finite 

element approximation of each of the problem [14], [5], [12]. All meshes and simulations are done in FreeFem++ 

[10]. Using the variational formulation we develop a programming code in FreeFem++ to find ),( pu from the 

Navier-Stokes equation and using this u we will find the extra stress tensor σ  from the tensorial transport 

equation using another programming code developed in FreeFem++. We use a problem whose exact solution is 

known to validate the method. Finally, we address some conclusions and perspective of future works in this field. 

 

CONSERVATION LAWS FOR A CONTINUUM MEDIUM:  

Conservation laws states the physical principles governing the fluid motion in a continuum medium. According to 
the conservation laws, a particular measurable property of an isolated physical system does not change as the system 

evolves. Lavoisier states that “in nature nothing is created, nothing is lost, everything is transformed”. We consider 

flows of a visco-elastic, incompressible, homogenous fluid in a bounded domain )3,2( =⊂Ω dIR
d

with boundary 
.Ω∂  The mathematical formulations of these conservation laws are as follows: 

 

CONSERVATION OF MASS: 

Conservation of mass is a fundamental principle of classical mechanics governing the behavior of a continuum 

medium. It states that in a fixed region, the total time rate of change of mass is identically zero, i.e., mass is neither 

created nor destroyed during the motion. Physically, this interprets that the rate of change of the density of a fluid 

in motion is equal to the sum of the fluid convected into and out of the fixed region.  

The differential equation expressing conservation of mass is 

                                          0)( =⋅∇+
∂

∂
uρ

ρ

t
                                             (1) 

where ρ  is the density of the fluid, u  is the velocity vector. This equation is also called the equation of continuity. 

If the density is a constant, then the flow of the fluid is incompressible and the equation of continuity or the 

conservation of mass is expressed as  

                                                    0=⋅∇ u                                                    (2)        

 

CONSERVATION OF MOMENTUM: 

The conservation law of momentum for a continuum medium is the extension of the famous Newton’s second 

law of motion, “force= mass× acceleration”. For a moving flow field this law describe that the total time rate of 

change of linear momentum or acceleration of a fluid element is equal to the sum of externally applied forces on 

a fixed region. The equation of conservation of momentum is given by  

                                       fTuu
u

ρρ +⋅∇=







∇⋅+

∂

∂

t
                                     (3)     

where T  is the symmetric tensor field, called Cauchy stress tensor and f is an external force. 
 

FORMULATION OF THE CONSTITUTIVE RELATIONS:  

All materials mostly satisfy the fundamental conservation principles stated above. The mathematical 

specification of ‘material response’ laws is said to be the set of constitutive relations. This law relates the 
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Cauchy stress tensor with the kinematics of different quantities, in particular, the velocity field. Constitutive 

relations provide us to characterize the mechanical behavior of fluid. In this work we are concerned with non-

Newtonian fluids type. It is concerned with the flows of incompressible visco-elastic Oldroyd-B fluids. We first 
give the general form of constitutive equations and then we give the overview of differential constitutive 

equations for visco-elastic fluids of Oldryd-B having properties of elastic solids and viscous fluids characterized 

by a viscous behavior when subject to slow request and elastic behavior subjected to fast request. We take into 

account several principles and assumptions to formulate a constitutive equation such as principle of 

determinism, principle of material objectivity. We assume that the stress at a material point is determined by the 

deformation gradient at this point, i.e. we assume our material is simple fluid. 

Under the above principles, for simple, isotropic, incompressible fluid, the Cauchy stress tensor T can be 
expressed as 

sp τIT +−=  

where p  is the hydrostatic pressure, sτ is the extra stress tensor and I is the identity matrix or Kronecker  tensor.  

 

NON-NEWTONIAN FLUIDS: 

MODELS OF NON-NEWTONIAN VISCO-ELASTIC FLUIDS OF OLDROYD TYPE: 

Oldroyd observe that the convected time derivative πu
ππ

)( ∇⋅+
∂

∂
=

tdt

d  of a tensor π is not objective. The 

objective form of the time derivative of a tensor can be expressed as  

( )πuDuπDπuWuπWπu
πππ

)()()()()( +−−+∇⋅+
∂

∂
== a

tdt

d

Dt

Da                         (4) 

where 11 ≤≤− a  is a parameter.  

Here [ ]t)(
2

1
)( uuuD ∇+∇=  is the rate of deformation tensor or strain rate tensor, [ ]t)(

2

1
)( uuuW ∇−∇=  is the 

rate of spin or vorticity tensor and u∇  is the velocity gradient tensor and 
t)( u∇  is the transpose of u∇ . 

Oldroyd suggested a general form of constitutive equation as [11] 

1221 0,)(
)(

2),( λλλµλ ≤≤





+=∇++ uD

uD
uτγτ

τ

Dt

D

Dt

D a
ss

sa                           (5) 

Where the tensor sτ  is the  extra stress, µ the viscosity coefficient of the fluid which is assumed to be 

constant, 01 ≥λ  and 02 ≥λ  are the constants depends on the continuous medium are respectively called the 

relaxation and retardation time of fluid. There are several types of general model. We can generalize these 

models. For example the extra stress sτ can be written as a sum of partial stresses and for each partial stress 

there is a constitutive equation with different relaxation time. 

 

MODELS OF OLDROYD-B FLUIDS WITH EQUATIONS OF MOTION: 

If in (5), 0),( =∇uτγ s ,  021 >> λλ   and 1=a then we say that the constitutive equation is Oldroyd-B type. 

We know that the Cauchy stress tensor is given by sp τIT +−= . Decomposing the extra stress tensor sτ  into 

the sum of its Newtonian part nσ  and its visco-elastic part eσ  we can write ens σστ += , where 

)(2 uDσ nn µ=  and .
1

2

λ

λ
µµ =n   So, ).(2

1

2 uDσ
λ

λ
µ=n  

The Cauchy stress tensor can be written as  

een
pp σuDIσσIT ++−=++−= )(2

1

2

λ

λ
µ  

Considering the above properties, from (5), for Oldroyd-B fluid, the constitutive equation can be written as  

     

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where ne µµµ −=  i.e., ne µµµ += . 

Using (4) we can finally write,  

          
eeeeeee

e

t
σuDuDσuWσσuWuDσσu

σ
)()()()()(2)(1 ++−+=+




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From the conservation law of momentum (3), we can write, 

fTuu
u

ρρ +⋅∇=
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        fσuDIuu
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After simplifying we get 

fσuDuu
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2

1
2)(2 . 

So, the conservation of momentum can be written as   

fσuuu
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ρµρ +⋅∇=∆−∇+







∇⋅+

∂

∂
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t
                                                      (7)                                                                                                                          

For the simplicity we write σ  instead of eσ .  Imposing some boundary conditions we obtain the following 

Oldroyd-B problems formed by the system of equations (7), (2) and (6): 

Find ),,( σu p  defined in Ω  such that  
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ρµρ

                    (8) 

We observe that the conservation of momentum leads to symmetry properties of the tensorσ , i.e. .σσ =t
 

The problem (8) is a mixed problem. The first two equations form an elliptic system for ),( pu  which is in the 

form of Navier-Stokes equations. The last equation has a hyperbolic characteristic for each component of 

))(( 2,1, == jiijσσσ  which is the type of Transport equation. We will find the solution of (8) in case of steady 

flow i.e. for 0=
∂

∂

t

u
by using two auxiliary problems.  

THE NAVIER-STOKES EQUATIONS: 

When the visco-elastic part 0=eσ , then the Cauchy stress tensor can be written as 

).(2 uDIσIT nn pp µ+−=+−=  

Substituting the value of T in (3) and after simplifying, the momentum equation can be written as  
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u
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Considering  ρ
 

as a constant, we define the kinematic viscosity 
ρ

µ
ν =  (m

2
/s) and the scaled pressure 

ρ

p

 
(m

2
/s

2
) still denoted by p and we obtain 

                            fuuu
u

=∆−∇+∇⋅+
∂

∂
νp

t
                                                   (9) 

Imposing homogeneous Dirichlet boundary conditions, the Navier-stokes equations form by (3) and (9) is as 

follows 

  

 

                                                             

         (10) 

 

 

 

If in second equation of (8), the visco-elasticity σ is known, then considering ( )fσ ρ
ρ

+⋅∇
1  still denoted by f we 

get fuuu
u

=∆−∇+∇⋅+
∂

∂
νp

t
. So the first two equations in (8) become identical with the Navier-Stokes equations. 

So it is enough to find the solution of Navier-stokes equations. 

For steady flow the Navier-stokes problem can be written as  

Find ),( pu  such that 

                                 









Ω∂=

Ω=⋅∇

Ω=∆−∇+∇⋅

.on  0

,in0
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u

fuuu νp
                                                     (11) 

We use some notations of different function spaces details of which can be found in [1], [3]. The variational or 

weak formulation of Navier-stokes equation consists of the integral equations over Ω obtained by integration, 

after multiplying the momentum equation and continuity equation by appropriate test functions. Applying the 

Green’s formula for the integration by parts and taking into account that v  vanishes on the boundary and after 

simplifying we get the variational formulation of the Navier-Stokes problem (11) as follows: 

Find )()(),( 2

0

1 Ω×Ω∈ LHu p  such that 

                                






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                               (12) 

for all ).()(),( 2

0

1

0 Ω×Ω∈ LHv q  

It can be proved [8] that the problem (12) is well-posed and equivalent to (11). The existence and uniqueness of 

theorem for the solutions of Navier-Stokes system can be found in [7], [8], [17]. 

We use classical Galerkin method to find the solution. We write the discretized problem. Let h denotes a 

discretization parameter and let 
hV and 

hQ  be two finite dimensional spaces such that )(1 Ω∈ HVh
 and 

).(2 Ω∈ LQh
 We let )(: 1

0

0 Ω∩= HVV hh
and )(: 2

0 Ω∩= LQM hh
. 

Considering the homogeneous case 0=hu  , in these spaces the discrete finite element approximation problem 

of (12) can be written as follows: 

Find hhhh p MVu ×∈ 0),(  such that 
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                (13) 

Let N and M be the dimensions of the spaces hV and hQ , and let 
Nnn ,,1}{

L=ϕ  and 
Mmm ,,1}{

L=ψ  be their 


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respective Lagrange bases. We write ∑
=

=
N

n

nnh

1

ϕuu  and ∑
=

=
M

m

mmh pp
1

ψ . Setting )0},({),(
21

rhhh vv ϕ==v  

and }){,0( rϕ  for Nr ,,2,1 L=  and also the test basis for hq  and substituting in problem (13) and 

integrating, we obtain a nonlinear algebraic system. Details can be found in [5]. 

The solution of this system can be evaluated using iterative method. All meshes and simulations were done in 

FreeFem++ [10] which is a free software with its own high level programming language based on the finite 

element method (FEM) to solve partial differential equations. An automatic mesh generator is used in 

FreeFem++ based on Delaunay-Voronoi algorithm where the number of internal points are proportional to the 

number of points on the boundaries. The graphics were generated in FreeFem++.  

We develop the program in FreeFem++ from the varaitional problem (12). We use Newton-Raphson iteration 
[4] for the system of non-linear equations and Frechet derivative is used for the non-linear term. The 

calculations have been performed with a kinematic viscosity 1=ν . For the validation of the code we consider 

a model problem whose exact solution is known and is given by 

     ( ))12())((),12)(()()(
222222 −−−−−−−= xyyxxyyyxxxu                      (14)   

              yxp +=)(x                                                                                       (15)               

This problem is solved on the unit square ]1,0[]1,0[ ×=Ω  and prescribes the exact velocity according to (14) 

and (15) along the boundary of the fluid domain.  Since the kinematic viscosity is known, so it results the 

external force for this specific problem. If the external force is known, then using the following code we can 

find the velocity and pressure. Here the functions f1 and f2 are two components of external force.  

     

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Code1: For Navier-Stokes problem 

NUMERICAL RESULTS: 

We performed the code to find the velocity and pressure defined on mesh of dimension 5050× . The tests that 

follow were performed with 1=ν . We denote the first component of the velocity field by u1, the second 

component of velocity field by u2 and the pressure filed by p. 

    
Figure1: 5050×  mesh                                               Figure 2: Contours of u1 

int n=50, m=50;               real x0=0.0, x1=1.0;              real y0=0.0, y1=1.0; 

mesh Th=square(n,m,[x0+(x1-x0)*x,y0+(y1-y0)*y]); plot(Th); fespace Vh(Th,P2); fespace Qh(Th,P1); 

Vh u1,u2,v1,v2,u1p,u2p; //u1p,u2p means the previous iteration value 

Qh p,q,p0; real nu=1.,error;   real eps=10e-19; 

func f1=-2*(2*x-1)^2*(y^2-y)*(2*y-1)-(4*(x^2-x))*(y^2-y)*(2*y-1)-6*(x^2-x)^2*(2*y-1)+1+2*(x^2-x)^3*(y^2-

y)^2*(2*y-1)^2*(2*x-1)-(x^2-x)*(y^2-y)^2*(2*x-1)*((x^2-x)^2*(2*y-1)^2+2*(x^2-x)^2*(y^2-y)); 

funcf2=(6*(2*x-1))*(y^2-y)^2+(2*(x^2-x))*(2*y-1)^2*(2*x-1)+(4*(x^2-x))*(y^2-y)*(2*x-1)+1+(x^2-x)^2*(y^2-

y)*(2*y-1)*(-(2*x-1)^2*(y^2-y)^2-(2*(x^2-x))*(y^2-y)^2)+2*(x^2-x)^2*(y^2-y)^3*(2*x 1)^2*(2*y-1); 

problem SNS([u1,u2,p],[v1,v2,q]) =int2d(Th)(nu*( dx(u1)*dx(v1)+dy(u1)*dy(v1)+ dx(u2)*dx(v2) 

+dy(u2)*dy(v2))-p*q*(0.0000001)-p*(dx(v1)+dy(v2))  - q*(dx(u1)+dy(u2)) 

+ (u1*dx(u1p)+u2*dy(u1p))*v1 + (u1*dx(u2p)+u2*dy(u2p))*v2 

+ (u1p*dx(u1)+u2p*dy(u1))*v1 + (u1p*dx(u2)+u2p*dy(u2))*v2) 

-int2d(Th)( nu * ( dx(u1p)*dx(v1) + dy(u1p)*dy(v1) 

+ dx(u2p)*dx(v2) + dy(u2p)*dy(v2)) - p0*(dx(v1)+dy(v2))-            q*(dx(u1p)+dy(u2p)))- 

int2d(Th)((u1p*dx(u1p)+u2p*dy(u1p))*v1+(u1p*dx(u2p)+u2p*dy(u2p))*             v2)-int2d(Th)(f1*v1+f2*v2)+ 

on(1,2,3,4,u1=0,u2=0);             u1p = 0;              u2p = 0; 

p0=0;             for(int i=0;i<=50;i++) {             SNS;            u1p[]-=u1[];      u2p[]-=u2[];            p0[]-=p[]; 

error= u1[].linfty + u2[].linfty + p[].linfty;            if (error < eps) break; 

            cout<<i<<endl;            cout<<error<<endl;            } 

            plot(u1p,value=true,nbiso=20,ps="u1.eps");            plot(u2p,value=true); 

            plot(p0,value=true);            plot(coef=1,[u1p,u2p]); 
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Figure 3: Contours of u2                          Figure 4: Contours of p 

 

From the above figures we observe that we have the contour plot of the velocity and pressure using the which are 

in fact the plot of the solutions of the Navier-Stokes problem. Numerical data are automatically generated to 

generate the contour plot. We can easily compare these solutions plot with the exact solutions. For any other 

problems, if the external force is known, we can easily find their velocity and pressure by changing the 

components f1 and f2. So using FreeFEm++ the solutions have been found for Navier-Stokes problem.  

 

TRANSPORT EQUATION: 

The transport equation is considered as an auxiliary problem to the Oldroyd-B model.  

Let )(,1 Ω∈ ∞Wu . The tensorial steady transport problem read as  

Find )(,1 Ω∈ ∞Wσ  such that  

                                  Ω=+∇⋅ in  )( gσσuλ                                                             (16) 

where IR∈λ  and )(2 Ω∈ Lg . 

If we let σuDuσDuσWσuWuDg )()()()()(2 ++−+= eµ  and 1λλ =  then the third equation of (8) is identical 

with (16) in steady case i.e. when 0=
∂

∂

t

σ . So we solve the transport problem to get the visco-elastic tensor of 

Oldroyd-B model. 

Let us define the space of tensorial functions 

{ })(.and),(,:}{ 22.1.22.1

2,1,

. Ω∈∇Ω∈=== = LσuσS L
ji

ji

ji σσσσ . 

Multiplying the equation (16) by a test tensor Sτ∈  and integrating over Ω and writing as bilinear and linear 

form, we obtain the variational formulation of (16) as follows: 

Find Sσ∈  such that  

                                Ω=+∇⋅ ∫∫∫
ΩΩΩ

in:::)( τgτστσuλ                                              (17) 

The existence and uniqueness theorem of weak solutions to this problem can be found in [13], [2]. 

In the finite dimensional subspace SS ⊂h , where h is a discretization parameter, the discrete tensorial problem 

is defined as follows: 

Find hh Sσ ∈  such that 

                             hhhhhhh Sττgτστσu ∈∀=+∇⋅ ∫∫∫
ΩΩΩ

:::)(λ                                  (18) 

Writing each component of hτ  we find an algebraic system of linear equation from (18). 

For the code in  FreeFem++ we use the variational formulation (17). We write 

σuDuσDuσWσuWuDg )()()()()(2 ++−+= eµ    and 1λλ = . If we write u , σ  and τ component wise 

such as ),( 21 uu=u ,  2,1,][ == jiijσσ  and  2,1,][ == jiijττ  then we find from (17)  
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Setting )1,for0where][( 2,1, ≠== = jiijjiij τττ , )2,1for0where][( 2,1, ≠≠== = jiijjiij τττ  

and )2,for0where][( 2,1, ≠== = jiijjiij τττ  

We have the following system of three linear equations in the varaiational formulation of the transport problem:  
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Considering 1,11 == eµλ  and writing 212111322212111 ,,,, ssddd ===== ττσσσ  322and s=τ  we 

develop the following code for the solution of the above system: 

Here we use the solution of the Navier-Stokes problem. We assume that the velocity is known. We can find the 

component of stress tensor using the code given below:  

                      

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

Code 2: For Transport Problem 

 

int n=50, m=50; 

real x0=0.0, x1=1.0; 

 real y0=0.0, y1=1.0; 

 mesh Th=square(n,m,[x0+(x1-x0)*x,y0+(y1-y0)*y]); 

plot(Th); 

fespace Qh(Th,P1); 

Qh d1,d2,d3,s1,s2,s3,d1aux,d2aux,d3aux; 

Qh u1=(x^2-x)^2*(y^2-y)*(2*y-1); 

Qh u2=-(x^2-x)*(y^2-y)^2*(2*x-1); 

real lamda=1.;//error; 

real mu=1.; 

real eps=10e-8,error; 

int i; 

problem E1(d1,s1) =int2d(Th)((lamda*(u1*dx(d1)+u2*dy(d1)-2*dx(u1)*d1)+d1)*s1)-

int2d(Th)((2*mu*dx(u1)+2*lamda*dy(u1)*d2aux)*s1); 

problem E2(d2,s2) =int2d(Th)((lamda*(u1*dx(d2)+u2*dy(d2)-(dx(u1)+dy(u2))*d2)+d2)*s2)-

int2d(Th)(( mu*(dx(u2)+dy(u1))+lamda*(dx(u2)*d1aux+dy(u1)*d3aux))*s2); 

problem E3(d3,s3) =int2d(Th)((lamda*(u1*dx(d3)+u2*dy(d3)-2*dy(u2)*d3)+d3)*s3)-

int2d(Th)((2*mu*dy(u2)+2*lamda*dx(u2)*d2aux)*s3); 

d1aux=0; d2aux=0; d3aux=0; error=1; for (i=0;i<=50; i++) 

  while (error>eps) { E1; E2; E3;error=int2d(Th)((d1-d1aux)^2+(d2-d2aux)^2+(d3-d3aux)^2); 

d1aux=d1; 

d2aux=d2; 

d3aux=d3; 

}; 

plot(d1); 

plot(d2); 

plot(d3); 
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NUMERICAL RESULTS: 

We performed the code to find the stress tensor defined on mesh of dimension 5050× . The calculations have 

been performed with 11 =λ  and 1=eµ . The unknown stress components are 11σ , 2112 σσ =  and 22σ . 

                 
       Figure5: 5050×  mesh                           Figure 6: Contours of 11σ  

 

     
Figure 7: Contours of 2112 σσ =              Figure 8: Contours of 22σ  

We observe that we have the contour plots of the components of the extra stress which are in fact the plot of the 

solutions of the transport problem. So using FreeFem++ we can obtain the solution of Transport problem. 

 

DISCUSSION AND CONCLUSIONS: 

Since Oldroyd-B model can be decoupled into two auxiliary problems namely the Navier-stokes problem and transport 

problem, so we can find the velocity and pressure i.e. the solution of Navier-Stokes equations from Code 1 using 

FreeFem++. Then by using this known velocity we find the components of visco-elastic stress tensor i.e. the solution of 

the Transport problem from code 2. Therefore we obtain, in fact, the solution of the constitutive equation of Oldroyd-B 

fluid. We can find the velocity, pressure and extra stress tensor for any other problems by using their external forces. 

Here we approximate the extra stress, velocity and pressure via P1 continuous, P2 continuous and P1 continuous finite 

element respectively. If the approximation of visco-elastic tensor is P1 discontinuous finite element, then we can try to 
find the solution of the Oldroyd-B constitutive equations using FreeFem++ for further work. 
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