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ABSTRACT 

 

The two-parameter generalized exponential (GE) distribution was introduced and studied quite 
extensively by (Gupta and Kundu (1999), (2001a) and (2001b)). and Ahsanullah (2001) and 
Raqab (2002) studied the properties of order and record statistics from the GE distribution and 
their inferences, respectively. Gupta and Kundu (2003) used the ratio of the maximized 
likelihoods (RML) in discriminating between the Weibull and GE distributions. The two 
parameters of a GE distribution represent the scale and the shape parameters and because of the 
scale and shape parameters.  
The Markov Chain Monte Carlo (MCMC) method is used to estimate the parameters of a 
generalized exponential distribution based on a complete sample. The MCMC methods have been 
shown to be easy to implement computationally, the estimates always exist and are statistically 
consistent, and their probability intervals are convenient to construct. The R functions are 
developed to study the statistical properties of the distribution and the output analysis of MCMC 
samples generated from Open BUGS. The maximum-likelihood estimation (MLE) is the most 
used method for parameter estimation. We also compute the maximum likelihood estimate and 
associated confidence intervals to compare the performance of the Bayes estimators with the 
classical estimator’s construction of associated probability intervals. We also develop a module                  
dgen (alpha,lamda) which is written in component Pascal, enable to perform full Bayesian 
analysis of generalized exponential distribution. The proposed methodology can be applied for 
empirical modeling, which includes estimation of parameters, model validation and comparison. 
A real data set is considered for illustration purpose under gamma priors. 
 

Key Words: Generalized Exponential (GE) Distribution, parameter estimation, informative set 
of priors, Maximum likelihood Estimation (MLE), Bayesian Estimation in Open 
Bugs, Markov Chain Monte Carlo (MCMC) Method, etc. 
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1 INTRODUCTION: 

Exponential distribution play a central role in analyses of lifetime or survival data, in part because of their 
convenient statistical theory, their important 'lack of memory' property and their constant hazard rates. In 
circumstances where the one-parameter family of exponential distributions is not sufficiently broad, a number 
of wider families such as the gamma, Weibull and lognormal distributions are in common use. Adding 
parameters to a well-established family of distributions is a time honored device for obtaining more flexible 
new families of distributions 
The probability density function of GE is written as; 

{ } 1x xf (x; , ) e 1 e ; ( , ) 0, x 0
α −−λ −λα λ = α λ − α λ > >  (1.1) 

The typical generalized exponential density functions for different values of � and for  � = 1 shows that the 
density function of the generalized exponential distribution can take different shapes. It is a unimodal density 
function and for fixed scale parameter as the shape parameter increases it is becoming more and more 
symmetric. It is unimodal for � > 1 and it is reversed `J' shaped for � � 1. The density function of the 
generalized exponential distribution is log-convex if � < 1 and log-concave if �� 1. 
In this paper, the Markov chain Monte Carlo (MCMC) method is used to estimate the parameters of a 
generalized exponential distribution based on a complete sample. A procedure is developed to estimate the scale 
and shape parameters of the generalized exponential distribution using Markov Chain Monte Carlo (MCMC) 
simulation method in Open BUGS. A module (code) is incorporated in Open BUGS. The MCMC methods have 
been shown to be easy to implement computationally, the estimates always exist and are statistically consistent, 
and their probability intervals are convenient to construct. The R functions are developed to study the statistical 
properties of the distribution and the output analysis of MCMC samples generated from Open BUGS. One real 
data set has been analyzed for illustration.  
The rest of the paper is organized as follow: 
In section 2, we carry out the model analysis by discussing various function of GE distribution. In section 3; we 
discuss the MLE and information matrix. We give a brief description of model validation by taking a real data 
set in section 4. The Bayesian estimation in Open BUGS and its implementation under informative set of priors 
which include convergence diagnostic, visual summary and numerical summary is discussed in section 5. In 
section 6, we have made comparison with MLE by way of plotting different graph. The conclusion is given in 
section 7. 
 
2. Model Analysis 

The exponential distribution is generated by a method of introducing a parameter to expand the family of one-
parameter exponential distribution.  
Let the reliability/survival function is given by 

{ }xR (x; , ) 1 1 e ; ( , ) 0, x 0
α−λα λ = − − α λ > >

 
(2.1) 

 
The R function sgen.exp ( ) computes the reliability/ survival function.  

The cumulative distribution function of generalized exponential (GE) distribution  

{ }xF(x; , ) 1 e ; ( , ) 0, x 0−= − > >
αλα λ α λ   ; (2.2) 

 
where � �0 and � � 0 are the shape and scale parameters, respectively.  
The probability density function (pdf) associated with (2.2) is given by 
 

    { } 1x xf (x; , ) e 1 e ; ( , ) 0, x 0
α−−λ −λα λ = α λ − α λ > >

 (2.3)
 

We denote the generalized exponential with parameters �and� as X~GE (� � 
The R functions dgen.exp ( ) and pgen.exp ( ) can be used for the computation of pdf and cdf, respectively. 
Some of the typical generalized exponential density functions for different values of � and for   �  = 1 are 
shown in Figure 1.  
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Figure 1 : Plots of the probability density function for � =1 and different values of � It is clear from the Figure 
1 that the density function of the generalized exponential   distribution can take different shapes.  
The GE (��) distribution is unimodal with mode at  

1M o d e lo g ; 1= α α >
λ

 (2.4) 

and it is reverse ‘J’ shaped if  � < 1. The mean, median, variance and mode all are non-linear functions of the 
shape parameter, and as the shape parameter goes to infinity, all of them tend to infinity.   

  { }1M ean ( 1) (1) ;= ψ α + − ψ
λ

                                                            (2.5) 

  
{ }2

1Variance (1) ( 1)′ ′= ψ − ψ α +
λ

                                                           (2.6)                                  

  { }1 /1M edian log 1 (0 .5) .α= − −
λ

                                                                        (2.7) 

where �(.)  is the digamma function and �'(.)  is its derivative. For large values of �, the mean, median and 
mode all are approximately equal to log � 
 

THE HAZARD FUNCTION: 

The hazard function is defined as 

{ }
{ }

1x x

x

e 1 e
h(x; , )

1 1 e

α−−λ −λ

α−λ

α λ −
α λ =

− −
, (2.8) 

and the associated R function is  hgen.exp( ).Some of the typical  hazard functions for different values of �and 
for λ=1 are depicted in   Figure 2. 

 
Figure 2    : Plots of the hazard function for different values of  �  and  � = 
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The cumulative hazard function H(x) defined as 
                            
      { }H(x) 1 log F(x )= − −  (2.9) 
It can be obtained with the help of pgen.exp( ) function by choosing  arguments   lower.tail=FALSE and    
log.p=TRUE. i.e.   
pgen.exp(x, alpha, lambda, lower.tail=FALSE,log.p=TRUE) 
The survival function (s.f.) and the conditional survival of X are defined by 
 
                      R(x) = 1 − F(x)       
         and     R  (x  +  t)R  (x  | t) =  

R (x )
  , t > 0, x > 0, R (·) > 0, (2.10) 

respectively, where F(·) is the cdf of X. Similarly to h(x) and FRA(x) 
The R functions hra.gen.exp ( ) and crf.gen.exp ( ) are used for the computation of failure rate average (fra) and 
conditional survival function (crf), respectively.   
Graphically, the five numbers are often displayed as a box plot.   
The quantile function is given by 

     { }1/
q

1x log 1 q ; 0 q 1.= − − < <α
λ  

(2.11)
 

The computation of quantiles, the R function qgen.exp ( ) can be used.  
Figure 3 illustrates the use of qgen.exp ( ) function. 

 
Figure 3  :  An illustration of the quantiles for � =1 and ���vertical line Indicates the median.   

3. MAXIMUM LIKELIHOOD ESTIMATION (MLE) AND INFORMATION MATRIX: 

Let x=(x1, . . . , xn) be a random sample of size n from GE(α, λ), then the  log-likelihood function L(α, 
λ) can be written as;   
 { }n n x ii

i 1 i 1
L ( , ) n lo g n lo g x ( 1) lo g 1 e − λ

= =
α λ = α + λ − λ + α − −∑ ∑  (3.1) 

Therefore, to obtain the MLE’s of α and λ we can maximize (3.1) directly with respect to α and λ or we can 
solve the following two non-linear equations using iterative procedure:  

   { }n x i
i 1

L n log 1 e 0−λ

=

∂
= + − =∑

∂α α
 (3.2) 

{ }
x in n i

i x ii 1 i 1

L n x ex ( 1) 0
1 e

−λ

−λ= =

∂
= − + α − =∑ ∑

∂λ λ −
 (3.3) 

Asymptotic Confidence intervals based on MLE Since the MLEs of the unknown parameters �=(�, �)  can not 
be   in closed forms, it is not easy to derive the exact distributions of the MLEs. We can derive the asymptotic 
confidence intervals of these parameters when � > 0, and � > 0. The large sample approach is to assume that 
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the MLE ˆˆ( , )α λ  are approximately bivariate normal with mean (�, �) and covariance matrix 1
0I− , (Lawless 

(2003)), where 1
0I−  is the inverse of the observed information matrix 

( )

12 2

2
1ˆ ˆˆ ˆ, ,1

ˆ0 ˆ( , )2 2

2
ˆ ˆˆ ˆ, ,

ln L ln L

I H
ln L ln L

−

−α λ α λ−
α λ

α λ α λ

⎛ ⎞∂ ∂
⎜ ⎟− −

∂α ∂λ∂α⎜ ⎟
⎜ ⎟= = −
⎜ ⎟∂ ∂
− −⎜ ⎟

∂λ ∂α⎜ ∂λ ⎟
⎝ ⎠

  

ˆˆ ˆvar ( ) cov( , )
ˆ ˆˆcov( , ) var ( )

⎛ ⎞α α λ
= ⎜ ⎟⎜ ⎟α λ λ⎝ ⎠

       (3.4) 

The above approach is used to derive the 100(1 -�/2 )% confidence intervals of the parameters   �=(�, �) as in 
the following forms 

/ 2ˆ ˆz Var( )γα ± α    and / 2
ˆ ˆz Var( )γλ ± λ  (3.5) 

Here, z�/2 is the upper (�/2)th percentile of the standard normal distribution. 
  
COMPUTATION OF MAXIMUM LIKELIHOOD (ML) ESTIMATION: 

We consider the real data set reported in (Lawless, 2003, page 228) presented here arose in test on endurance of 
deep groove ball bearing. The data represented are the number of million revolutions before failure of each of 
the 23 ball bearing in the life test.  The direct maximization of log-likelihood function given in (3.1) using 
Newton-Raphson method in R gives, the ML estimates and standard error. The 95% confidence interval is 
computed using (3.4) and (3.5).  
The Table 1. Shows the ML estimates, standard error (SE) and   95 % Confidence Intervals for parameters alpha 
and lambda 
 

TABLE 1   : ML ESTIMATE, STANDARD ERROR AND 95% CONFIDENCE INTERVAL 

Parameter MLE Std. Error 95% Confidence Interval 

alpha 5.28321 2.04816 (1.26881, 9.29761) 
lambda 0.03230 0.00642 (0.01971, 0.04488) 

                   
 

4. MODEL VALIDATION: 

Most statistical methods assume an underlying distribution (model) in the derivation of their results. However, 
when we assume that the data follow a specific distribution, we are making an assumption. If such a model does 
not hold, then the conclusions from such analysis may be invalid. For example, the confidence levels of the 
confidence intervals or hypotheses tests implemented may be off. Although hazard plotting and the other 
graphical methods can guide the choice of the parametric distribution, one cannot of course be sure that the 
proper model has been selected. Hence model verification is still necessary to check whether we have achieved 
the goal of choosing the right model. In this section we outline some of the methods used to check model 
appropriateness.  
There are two graphical methods widely used for checking whether a fitted model is in agreement with the data. 
In other words, we measure the quality of the fitted model. These methods are Quantile-Quantile (Q-Q) plots 
and the Probability-Probability (P-P) plots in model validation. 
 
THE Q-Q PLOTS 

Let F̂(x)  be an estimate of F(x) based on xl, x2,. . . , xn. The scatter plot of the points  

             
1

1:nF̂ (p )−   versus   xi : n   ,   i = 1 , 2, . . . ,n ,  is called a Q-Q plot.  
Thus, the Q-Q plots show the estimated versus the observed quantiles. If the model fits the data well, the pattern 
of points on the Q-Q plot will exhibit a 45-degree straight line. Note that all the points of a Q-Q plot are inside 
the square 
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 [ ]1 1
1:n n :n 1:n n :n

ˆ ˆF (p ) , F (p ) x , x− −⎡ ⎤ ×⎣ ⎦
 . 

The corresponding R function is qq.gen.exp ( ). It can be seen from the straight line pattern in Figure 4; the GE 
fits the data very well. 

 
                    
Figure 4    : Quantile-Quantile (Q-Q) plot using MLEs as estimate. 
 
THE P-P PLOT: 
Let xl, x2,. . . , xn be a sample from a given population with estimated cdf F̂(x) . The scatter plot of the points 

   1:nF̂(x )    versus   pi : n  ,  i = 1 , 2 , . . . , n,     
is called a P-P plot. If the model fits the data well, the graph will be close to the     45-degree line. We see that 
all the points in the P-P plot are inside the unit square    [0, l] x [0, 1]. The corresponding R function is 
pp.gen.exp ( ).It can be seen from the straight line pattern in Figure 5 the GE distribution fits the data very well.                    

                          
 
Figure 5     : Probability-Probability (P-P) plot using MLEs as estimate 
 
5. Bayesian Estimation in Open BUGS: 

Statistical models must be described before they can be used. A language to describe statistical models is 
needed by both the users of the model and the software that makes inference about the model. The language 
should be a formal language with well defined rules which can be processed automatically as for as possible to 
make inferences about the model. A small change to a model should not lead to a large change in the way that 
model is described 
The most widely used piece of software for applied Bayesian inference is the WinBUGS package, distributed by 
the MRC Biostatistics Unit at Cambridge (Spiegelhalter, Thomas, Best, and Lunn 2004).  
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A module dgen.exp (alpha, lambda) is written in component Pascal to perform full Bayesian analysis of 
generalized exponential (GE) model into Open BUGS using the method described in Thomas (2007). 
 
IMPLEMENTATION OF MODULE - DGEN.EXP (ALPHA, LAMBDA) :  

The developed module is implemented to obtain the Bayes estimates of the GE distribution using MCMC 
method. The main function of the module is to generate MCMC sample from posterior distribution for given set 
of priors.  
Gamma prior: 
The most widely used prior distribution of � is the inverted gamma distribution with Parameters a and b 
(>0) with p.d.f. given by; 

 

          
a

a 1 bb e ; 0 (a , b) 0
( ) (a )

0 ; otherwise

− − θ⎧
θ θ > >⎪π θ = Γ⎨

⎪
⎩

  

 
 Bayesian Analysis under Informative set of Priors (Gamma) 

   Model 
    { 
     for( i in 1 : N )  
        { 
              x[i] ~ dgen.exp(alpha, lambda)  
    
          }   
   # Prior distributions of the Model parameters 
   # Gamma prior for alpha  
   alpha~ dgamma(0.001, 0.001) 
   # Gamma prior for lambda 
   lambda~ dgamma(0.001, 0.001)  
       } 
DATA SET:  

list( N=23, x = c(17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.80, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 
68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40)) 

INITIAL VALUES : 
  # Chain1  

 list(alpha=4.0, lambda=0.01) 
 
  # Chain 2 

list(alpha=8.0, lambda=0.1) 

We run the model to generate two Markov Chains at the length of 40,000 with different starting points of the 
parameters. The convergence is monitored using trace and ergodic mean plots, we find that the Markov Chain 
converge together after approximately 2000 observations. Therefore, burning of 5000 samples is more than 
enough to erase the effect of starting point (initial values). Finally, samples of size 7000 are formed from the 
posterior by picking up equally spaced every fifth outcome, i.e. thin=5, starting from 5001.This is done to 
minimize the auto correlation among the generated deviates. 
Therefore, we have the posterior sample {α1i ,λ1i}, i = 1,…,7000 from chain 1 and {α2i ,λ2i}, i = 1,…,7000 from 
chain 2.  
The chain 1 is considered for convergence diagnostics plots. The visual summary is based on posterior sample 
obtained from chain 2 whereas the numerical summary is presented for both the chains. 
 
  CONVERGENCE DIAGNOSTICS: 
  History (Trace) plot Before examining the parameter estimates or performing other inference, it is a 
good idea to look at plots of the sequential (dependent) realizations of the parameter estimates and plots thereof. 
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We have found that if the Markov chain is not mixing well or is not sampling from the stationary distribution, 
this is usually apparent in sequential plots of one or more realizations. The sequential plot of parameters is the 
plot that most often exhibits difficulties in the Markov chain. Figure 6 shows the sequential realizations of the 
parameters of the model. In this case Markov chain seems to be mixing well enough and is likely to be sampling 
from the stationary distribution.  

 
                                       Figure 6   : Sequential realization of the parameters �and �. 

  
The plot looks like a horizontal band, with no long upward or downward trends, so we have evidence that the 
chain has converged.  
 
RUNNING MEAN (ERGODIC MEAN) PLOT: 

Generate a time series (iteration number) plot of the running mean for each parameter in the chain. The running 
mean is computed as the mean of all sampled values up to and including that at a given iteration.  

 

 
                Figure 7   : The Ergodic mean plots for alpha and lambda. 

The convergence pattern based on ergodic averages is shown in Figure 7 which indicates the convergence of the 
chain 
 
AUTOCORRELATION:   

The graph shows that the correlation is almost negligible. We may conclude that the samples are independent. 

           
             Figure 8   : The autocorrelation plots for alpha and lambda 
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NUMERICAL SUMMARY: 

In Table 2. We have considered various quantities of interest and their numerical values based on MCMC 
sample of posterior characteristics for generalized exponential (GE) distribution under gamma priors. The 
Highest probability density (HPD) intervals are computed the algorithm described by Chen and Shao (1999) 
under the assumption of unimodal marginal posterior distribution. 
 

TABLE 2: MCMC SAMPLE BASED POSTERIOR CHARACTERISTICS FOR GENERALIZED 

EXPONENTIAL DISTRIBUTION UNDER GAMMA PRIORS 

Characteristics Chain 1 Chain 2 
alpha lambda alpha lambda 

Mean 5.319 0.03169 5.273 0.03155 
Standard  Deviation 2.168 0.006492 2.139 0.006389 

Monte Carlo(MC) error 0.04123 0.000117 0.04336 0.000124 
Minimum 1.188 0.01323 1.032 0.01116 

First Quartile (Q1) 3.755 0.02715 3.74 0.02714 
Median 4.943 0.03164 4.886 0.03131 

Third Quartile (Q3) 6.433 0.03587 6.344 0.03575 
Maximum 17.61 0.06143 19.26 0.06784 

Mode 4.37860 0.03272 4.36888 0.03075 
2.5th Percentile(P2.5) 2.232 0.01968 2.225 0.0201 

97.5th Percentile(P97.5) 10.66 0.04503 10.5 0.04489
95% Credible Interval (2.232, 10.66) (0.01968, 0.04503) (2.225, 10.5) (0.0201, 0.04489) 

95% HPD Credible 
Interval (1.782, 9.676) (0.01960, 0.04489) (1.873, 9.508) (0.01977, 0.04425)

 

VISUAL SUMMARY: 

Box plots: 

The boxes represent inter-quartile ranges and the solid black line at the (approximate) centre of each box is th  
mean; the arms of each box extend to cover the central 95 percent of the distribution - their ends correspond, 
therefore, to the 2.5% and 97.5% quartiles. 
 

 
                              Figure 9   :  The box plots for alpha and lambda. 
 

6. COMPARISON WITH MLE: 
For the comparison with MLE we have plotted two graphs. In Figure 10 the density functions ˆˆf(x; , )α λ using 
MLEs and Bayesian estimates, computed via MCMC samples under gamma priors, are plotted.  

 
Figure 10  : The density functions ˆˆf(x; , )α λ using MLEs and Bayesian estimates,Computed via MCMC 
samples under gamma priors. 
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The Figure 11 represent the Quantile-Quantile(QQ) plot of empirical quantiles and theoretical  quantiles   
computed from MLE and Bayes estimates 

   

              
 

Figure 11 : Quantile-Quantile (QQ) plot of empirical quantiles and theoretical quantiles computed from MLE 
and Bayes estimates. 
It is clear from the Figures 11; the MLEs and the Bayes estimates with respect   to the gamma priors are quite 
close and fit the data very well.  
 
7. CONCLUSION: 

The developed methodology for MLE and Bayesian estimation has been demonstrated on a real data set when 
both the parameters alpha (shape) and lambda (scale) of the GE distribution are unknown under informative set 
of independent priors. The bayes estimates of the said priors have been obtained under squared error, absolute 
error and zero-one loss functions. A five point summary Minimum (x), Q1, Q2, Q3, Maximum (x) has been 
computed. The symmetric Bayesian credible intervals and Highest Probability Density (HPD) intervals have 
been constructed. With the use of graphical representations the intent is that one can gain a perspective of 
various meanings and associated interpretations. 
The MCMC method provides an alternative method for parameter estimation of the GE distributions. It is more 
flexible when compared with the traditional methods such as MLE method. Moreover, ‘exact’ probability 
intervals are available rather than relying on estimates of the asymptotic variances. Indeed, the MCMC sample 
may be used to completely summarize posterior distribution about the parameters, through a kernel estimate. 
This is also true for any function of the parameters such as hazard function, mean time to failure etc. The 
MCMC procedure can easily be applied to complex Bayesian modeling relating to GE model. 
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